熔融沉积成型法(FDM,Fused Deposition Modeling),这种工艺是通过将丝状材料如热塑性塑料、蜡或金属的熔丝从加热的喷嘴挤出,按照零件每一层的预定轨迹,以固定的速率进行熔体沉积。每完成一层,工作台下降一个层厚进行迭加沉积新的一层,如此反复最终实现零件的沉积成型。FDM工艺的关键是保持半流动成型材料的温度刚好在熔点之上(比熔点高1℃左右)。其每一层片的厚度由挤出丝的的直径决定,通常是0.25~0.50mm。FDM的优点是材料利用率高;材料成本低;可选材料种类多;工艺简洁。缺点是精度低;复杂构件不易制造,悬臂件需加支撑;表面质量差。该工艺适合于产品的概念建模及形状和功能测试,中等复杂程度的中小原型,不适合制造大型零件。3D打印技术,熔融沉积成型,3D打印原理,快速成型工艺,3D打印服务,3D打印平台。FDM是“Fused Deposition Modeling”的简写形式,即为熔融沉积成型,这项3D打印技术由美国学者Scott Crump于1988年研制成功。FDM通俗来讲就是利用高温将材料融化成液态,通过打印头挤出后固化,最后在立体空间上排列形成立体实物。FDM机械系统主要包括喷头、送丝机构、运动机构、加热工作室、工作台5个部分。熔融沉积工艺使用的材料分为两部分:一类是成型材料,另一类是支撑材料。将低熔点丝状材料通过加热器的挤压头熔化成液体,使熔化的热塑材料丝通过喷头挤出,挤压头沿零件的每一截面的轮廓准确运动,挤出半流动的热塑材料沉积固化成精确的实际部件薄层,覆盖于已建造的零件之上,并在1/10s内迅速凝固,每完成一层成型,工作台便下降一层高度,喷头再进行下一层截面的扫描喷丝,如此反复逐层沉积,直到最后一层,这样逐层由底到顶地堆积成一个实体模型或零件。
FDM发展历程:熔融沉积成型(Fused Deposition Modelling, FDM)是上世纪八十年代末,由美国Stratasys公司的斯科特·克伦普(Scott Crump)发明的技术,是继光固化快速成型(SLA)和叠层实体快速成型工艺(LOM)后的另一种应用比较广泛的3D打印技术。1992年,Stratasys公司推出世界上第一款基于FDM技术的3D打印机--“3D造型者(3D Modeler)”,标志着FDM技术步入商用阶段。3D Modeler,国内方面,对于FDM技术的研究最早在包括清华大学、西安交大、华中科大等几所高校进行,其中清华大学下属的企业于2000年推出了基于FDM技术的商用3D打印机,近年来也涌现出多家将3D打印机技术商业化的企业。2009年FDM关键技术专利到期,各种基于FDM技术的3D打印公司开始大量出现,行业迎来快速发展期,相关设备的成本和售价也大幅降低。数据显示,专利到期之后桌面级FDM打印机从超过一万美元下降至几百美元,销售数量也从几千台上升至几万台。
熔融沉积制造,Scott Crump在1988年提出了Fused Deposition Modeling(FDM)的思想,1992年由美国Stratasys公司开发推出了第一台商业机型3D-Modeler。主要特点:采用热熔挤压头的专利,整个系统构造原理和操作简单,维护成本低,系统运行安全;成型速度快,不需要SLA中的刮板再加工工序,系统校准为自动控制;用蜡成型的零件,可直接用于熔模铸造;可以成型任意复杂程度的零件,常用于具有很复杂的内腔、孔 等零件;成型材料广泛,主要是石蜡、ABS、人造橡胶、铸蜡和聚酯热塑料等低熔点材料和低熔点金属、陶瓷等的线材或粉料。原材料利用率高,且材料寿命长;支撑去除简单,无需化学清洗,分离容易;成本低,FDM工艺不用激光器件,因此使用、维护简单,成本较低;原材料的利用率高无污染。






