核磁共振氢谱是利用核磁共振仪记录下原子在共振下的有关信号绘制的图谱。其吸收峰个数,为等效氢原子种数,吸收峰面积之比,为各种等效氢原子个数的最简整数比。核磁共振氢谱中,峰的数量就是氢的化学环境的数量,而峰的相对高度,就是对应的处于某种化学环境中的氢原子的数量。使用核磁共振仪自带的自动积分仪可以对各峰的面积进行自动积分,得到的数值用阶梯式积分曲线高度表示出来。氢原子具有磁性,如电磁波照射氢原子核,它能通过共振吸收电磁波能量,发生跃迁。用核磁共振仪可以记录到有关信号,处在不同环境中的氢原子因产生共振时吸收电磁波的频率不同,在图谱上出现的位置也不同,各种氢原子的这种差异被称为化学位移。利用化学位移,峰面积和积分值以及耦合常数等信息,进而推测其在碳骨架上的位置。在核磁共振氢谱图中,特征峰的数目反映了有机分子中氢原子化学环境的种类;不同特征峰的强度比(及特征峰的高度比)反映了不同化学环境氢原子的数目比。氢原子在分子中的化学环境不同,而显示出不同的吸收峰,峰与峰之间的差距被称作化学位移;化学位移的大小,可采用一个标准化合物为原点,测出峰与原点的距离,就是该峰的化学位移,现在一般采用(CH3)4Si(四甲基硅烷TMS)为标准化合物,其化学位移值为0 ppm。由于相邻碳上质子之间的自旋耦合,因此能够引起吸收峰裂分。例如,一个质子共振峰不受相邻的另一个质子的自旋偶合影响,则表现为一个单峰,如果受其影响,就表现为一个二重峰,该二重峰强度相等,其总面积正好和未分裂的单峰面积相等。自旋偶合使核磁共振谱中信号分裂成多重峰,峰的数目等于n+1,n是指邻近H的数目,例如CH3-CHCl2中CH3的共振峰是1+1=2,因为他邻近基团CHCl2上只有一个H;-CHCl2的共振峰是3+1=4,因为他邻近基团-甲基上有三个H。注意,只有当自旋偶合的邻近H原子都相同时才适用n+1规则。当自旋偶合的邻近H原子不相同时,裂分数目为(n+1)(n’+1)(n’’+1)。例如化合物Cl2CH-CH2-CHBr2中,两端两个基团-CHCl2和-CHBr2中的H并不相同,因而-CH2-应该裂分成为(1+1)(1+1)=4重峰。又如ClCH2-CH2-CH2Br中-CH2-该裂分为(2+1)(2+1)=9重峰
不同化学环境中的H,其峰的位置是不同的。峰的强度(也称为面积)之比代表不同环境H的数目比。
例:CH3CH2OH中,有3种H,则有3个峰,强度比为:3:2:1。
CH3OCH3中,只有一种H,则有1个峰。
CH2=CH-CH3中,有三种H,个数比为:2:1:3
一氯苯中:有3种H,个数比:2:2:1
CH3COOCH3中有2种H,个数比3:3or1:1
解根据分子式C6H14O2计算该未知物不饱和度为。,即它是一个饱和化合物。
在4.78 ppm的峰是水峰。
在低场3.65 ppm的单峰(对应两个氢原子)加重水交换后消失,因此可知它对应的是活泼氢。因为分子式仅含氧原子,所以两个活泼氢只能是羟基。
在氢谱的最高场(1.18 ppm)是一个双峰,峰面积为3,因此对应的是一个连接CH的甲基。
往下的两个单峰(1 26 ppm.] 31 ppm),积分面积均为3,肯定对应两个孤立的甲基,它们应该连接在季碳原子E。f场4 21 ppm处盼多重峰(对应一个氢原子)显然是由相邻基团耦合裂分产生。约1. 6 ppm的峰组对应两个氢原子,因此是一个亚甲基。其中左面的四重峰看得比较清楚,右边的峰组粗看是两重峰,看得不清楚,它们实际上是d×d的峰组,只不过其中一个耦合常数比较小,因而裂分不显著。从左往右第1-第3的跨距等于第2~第4的跨距,也等于右边峰组的较大的裂分间距。这是大的耦合常数,应该是2,。进一步的二裂分,是旁边的CH裂分所致。
核磁共振氢谱是用来测定分子中H原子种类和个数比的。
核磁共振氢谱中,峰的数量就是氢的化学环境的数量,而峰的相对高度,就是对应的处于某种化学环境中的氢原子的数量
不同化学环境中的H,其峰的位置是不同的。峰的强度(也称为面积)之比代表不同环境H的数目比。
例:CH3CH2OH中,有3种H,则有3个峰,强度比为:3:2:1。
CH3OCH3中,只有一种H,则有1个峰。
CH2=CH-CH3中,有三种H,个数比为:1:2:3
一氯苯中:有3种H,个数比:2:2:1
CH3COOCH3中有2种H,个数比3:3or1






