纵轴 %T :T代表透过率(transmittance),%是透过率的单位。横轴 cm-1:cm-1是波数的单位。波数是原子、分子和原子核的光谱学中的频率单位。符号为σ或v。等于真实频率除以光速,即波长(λ)的倒数,或在光的传播方向上每单位长度内的光波数。在波传播的方向上单位长度内的波周数目称为波数,其倒数称为波长。一般来说,科学家比较喜好采用厘米-克-秒制 (CGS) 来表达波数。光谱线的差距可以被解释为能级的差别;能级与频率成正比,与波数成反比。光谱数据通常是用波数纪录,跟光速和普朗克常数无关。分辨率:光谱分辨率是指把光谱特征峰分辩和分离的能力。样品增益:采集光谱时,探测器所选用的放大等级。光圈:光圈英文名称为Aperture,通常是直径可以调节的圆孔,光圈用来控制进入光学系统的光能量,防止出现探测器饱和或者曝光不足。背景扫描数:测量背景谱时的光谱仪扫描平均次数。
透过率测量时要先采集背景光谱(也就是没有样品存在时的光谱),样品谱除以背景谱得到样品的透过率光谱。测量时为了降低光谱噪声,往往多次扫描做平均,这就是扫描数。红外谱带的强度是一个振动跃迁概率的量度,而跃迁概率与分子振动时偶极矩的变化大小有关,偶极矩变化愈大,谱带强度愈大。偶极矩的变化与基团本身固有的偶极矩有关,故基团极性越强,振动时偶极矩变化越大,吸收谱带越强;分子的对称性越高,振动时偶极矩变化越小,吸收谱带越弱。
外界电磁波照射分子时,如照射的电磁波的能量与分子的两能级差相等,该频率的电磁波就被该分子吸收,从而引起分子对应能级的跃迁,宏观表现为透射光强度变小。电磁波能量与分子两能级差相等为物质产生红外吸收光谱必须满足条件之一,这决定了吸收峰出现的位置。红外吸收光谱产生的第二个条件是红外光与分子之间有偶合作用,为了满足这个条件,分子振动时其偶极矩必须发生变化。这实际上保证了红外光的能量能传递给分子,这种能量的传递是通过分子振动偶极矩的变化来实现的。并非所有的振动都会产生红外吸收,只有偶极矩发生变化的振动才能引起可观测的红外吸收,这种振动称为红外活性振动;偶极矩等于零的分子振动不能产生红外吸收,称为红外非活性振动。
谱图检索的主要优点是能够收集大量的光谱,只要根据未知物的光谱谱图就能识别化合物而无需其他数据(例如分子式等),它的程序也比较简单。但是它也有一些不可克服的缺点:首先,检索系统的能力与谱图库存储的化合物的数量成正比,我们不可能把自然界所有的化合物收集其中,谱图库的发展总是滞后于有机化学的发展。其次,光谱仪器随着技术的发展不断改进:波谱范围不断扩大,分辨率不断提高,低温技术得到应用,一些新仪器的出现,这就要求原有的谱图库要不断修改,而庞大的谱图库在短时间内是办不到的。由于检索方法的这些特点,决定了它不能作为结构鉴定的一种完整的手段。





