病原体感染身亡,或者被老虎吃掉了,显然都是由其他生物导致的死亡,而被雷劈死、被水淹死、被车撞死等等意外事故更不能算自然死亡。所谓自然死亡,是指仅仅由衰老导致的死亡。而衰老的定义是time-dependent functional decline,也就是生理功能随着时间逐步衰退。这种衰退,是伟大的进化优势?还是多细胞体系必然崩溃的宿命?
大牛曰,造成衰老的是九大元凶:Genomic instability:基因组不稳定Telomere attrition:端粒耗损Epigenetic alterations:表观遗传状态变动Loss of proteostasis:蛋白动态平衡被打破Mitochondrial dysfunction:线粒体损伤Deregulated nutrient sensing:营养信号感知下调Cellular senescence:细胞衰老Stem cell exhaustion:干细胞耗尽Altered intercellular communication:细胞间通讯变动首先来解释第一个,基因组不稳定。每当细胞增殖,一个细胞变成两个细胞的时候,基因组也相应地变成两份。人类的基因组含有30亿个碱基对,这是什么概念呢,举个栗子来感受一下,人类血红蛋白,就是在血液中负责运输氧气的那个家伙,它在基因组上的源代码是这个样子
这只是由627个碱基编码成的一个基因而已,让你手抄这一小段序列,能保证一个字母都不错吗?细胞在每一次增殖的时候都要保证30亿个碱基都被准确复制一遍,能保证完全不出错吗?显然不能。即使DNA复制在几十亿年的进化过程中已经变得非常非常精确,出错的频率大概是每十万个碱基有一个错误,但随着复制的进行,突变还是根本停不下来。你可能要说,那只要不复制就解决问题了嘛!确实,人体很多细胞都是不增殖不复制的。可是!宇宙是如此的残酷!不要忘了紫外线!环境中的各种化学物质!甚至自身的代谢产物!它们都能戕害基因组。所以,可怜的基因组早已被命运掐住了咽喉,随着时间而不断积累各种错误和伤口,造成基因组不稳定。对于单细胞来说,这种不稳定提供了自然选择和生物演化的素材。毕竟是一人吃饱全家不饿,哪怕它变得面目全非,也OK的。可是对于多细胞生命来说,每一个细胞都只是庞大机器上的一个小齿轮,对稳定性的要求非常高,根本容不得再细微的改变,一点点的变化都可能导致它不能承担自己的使命,失去本身的功能。所以,基因组不稳定对多细胞生物来说,会造成time-dependent functional decline,也就是衰老。
又要高高举起血红蛋白的栗子,复制CATAAA······这个基因时,DNA聚合酶只能把一个核苷酸连接到前一个核苷酸的3’羟基上,也就是找一个A焊接到C身上,再找一个T焊接到A身上,依次延伸而产生一条CATAAA······的长链。可第一个C是怎么来的?DNA聚合酶说臣妾做不到啊!没有前一个核苷酸的3’羟基,DNA聚合酶没法开工,只能干瞪眼啊。 事实上,细胞是利用一小段RNA作为引物,提供第一个3’羟基。有了3’羟基,DNA聚合酶就可以开心地干活儿了,等复制完成后,再把RNA引物这个脚手架给拆掉。在这个栗子里,如果第一个C是引物,复制之后,第一个C被拆没了,序列变成ATAAA······(这只是用来说明5’ gap如何产生的一个简化模型)显然,这种方式无法保全最前端的序列,每一次细胞增殖都要丢失最前端的遗传信息。
可是,作为历经几十亿年风霜的生命,如果不能防止这种大灾难发生,哪有机会把遗传信息流传到现在?
这里我们的细胞采用了最简单的方案,只要最前端是一段没有意义的乱码,问题就解决了,每次复制损失掉的都只是乱码,不会影响到有意义的编码序列。这就是端粒——每条DNA两头的一段非编码的重复序列。
对于单个细胞来说,确实是这样的,著名的Hela细胞就能激活端粒酶,得到永生。而对多细胞生物来说,目前还没有定论。多细胞生物体内是有分工的,第一个兵种是不断分裂的cycling cell,第二个兵种是暂停分裂,执行特定生理功能的quiescent cell,第三个兵种是特种兵terminally differentiated cell,高度特化定型,终生不再分裂。只有cycling cell用得上延长端粒的技能,而它们获得这个尚方宝剑之后就是大权在握,一旦出了问题而哗变,会像脱缰的野马,不停增殖不停突变,争夺其他兵种的粮草,对于整个多细胞体系来说,这是病,得治的。





