溶剂喷口跟counter electrode (也就是右边有小孔的黑条)通过雾化后的带点液滴以及离子形成了一个回路。所以阴离子是以电子的形式在回路中流动的。喷口与counter electrode之间形成了一个电场用来加速带正电的离子。只有一小部分离子能通过小孔,大部分离子碰撞到counter electrode形成回路。逃离的这部分正电荷使得原来的回路整体会带上少量的负电荷,这个我估计是通过接地的办法解决的。
带正电荷的离子通过小孔之后进入质量分析器。质量分析器有多种类型,比如扇形磁场、四极杆、飞行时间等等,涉及的原理不同。总之就是想办法把不同质荷比的离子给区分开来。经过质量分析器分离的离子达到检测器,记录下不同质荷比的离子的丰度,就可以形成常见的质谱图啦。
具有特定质荷比的离子能够以合适的半径通过质量分析器达到离子捕集器,形成电信号;而其他质荷比的离子由于偏转半径跟质量分析器管道半径不同,就打到了管壁上,不能到达捕集器。通过改变磁场强度,可以依次让不同质荷比的离子通过质量分析器,从而扫描整个区间内的所有不同质荷比的离子,最后经过处理,形成质谱。带一个Na+的分子,其质量增大了23,电荷为+1,形成 M+23离子,通过质量分析器被感应器(离子捕集器)探测到。打到感应器之后其所带电荷或者通过回路或者通过接地被中和。至于整个分子在感应器上变成了什么,这不是质谱所感兴趣的。
首先,MS使用的感应器很多,一大类是基于电子倍增管或类似东西的检测器,常见的离子井,triple quad,甚至包括ToF里用的MCP检测器,原理都差不多。想法就是把离子轰到一片铁上,然后崩出一堆电子,电子经过倍增管这种成熟的技术来放大信号。在这一类检测器下离子基本上都被轰成渣了(这个轰用的电压一般在1-5kV左右,基本上没救)。题主有兴趣的话可以去搜一搜Surface Induced Dissociation. 这个“技术”就是非常粗暴的把离子往一个表面上甩,看碎出来的东西长啥样。常见生物样品的SID的电压在100V上下,可想而知加十倍以后会变成啥。
另一类检测器长见于FT技术的MS里,比如FT-ICR,Orbi和一些其他的奇葩仪器里。这类仪器使用的检测器是检测离子飞过一个电极时产生的感应电荷。这个东西会被一个灵敏的电流计记录下来,然后经过一系列数据处理得到质谱。在这种模式下离子并不撞击检测器,于是就不会怎么样。ICR的玩家有过把一小撮离子扔在trap里面好几周的攻略。
质谱仪中较为常用的一种离子化方式.电喷雾离子源属于一种软电离源,能使大质量的有机分子生成带多电荷的离子,通常认为电喷雾可以用两种机制来解释.(1)小分子带电残基机制:在喷针针头与施加电压的电极之间形成强电场,该电场使液体电,带电的溶液在电场的作用下向带相反电荷的电极运动,并形成带电的液滴,由于小雾滴的分散,比表面增大,在电场中迅速蒸发,结果使带电雾滴表面单位面积的场强极高,从而产生液滴的“爆裂”重复此过程,最终产生分子离子.(2)大分子离子蒸发机制:首先也是电场使溶液带电,结果形成带电雾滴&带电的雾滴在电场作用下运动并迅速去溶,溶液中分子所带电荷在去溶时被保留在分子上,结果形成离子化的分子.一般来讲,电喷雾方法适合使溶液中的分子带电而离子化.离子蒸发机制是主要的电喷雾过程,但对质量大的分子化合物,带电残基的机制也会起相当重要的作用.电喷雾也可测定中性分子,它是利用溶液中带电的阳离子或阴离子吸附在中性分子的极性基团上而产生分子离子。






